Frank Stahl
Franklin Stahl

Emeritus Professor of Biology
A.B., Harvard University;
Ph.D., University of Rochester
Member of: Institute of Molecular Biology
Office: Onyx Room 287
Telephone: 541-346-6096

Email
Webpage

Research Interests

My attention continues to focus on genetic recombination, especially in meiosis.

Selected Publications

Stahl, F. W. (2005) Chi: a little sequence controls a big enzyme. Genetics 170: 487-493.

Lam, S., S. R. Horn, S. J. Radford, E. A Housworth, F. W. Stahl and G. P. Copenhaver (2005) Crossover interference on NOR-bearing chromosomes in Arabidopsis. Genetics 170: 807-812

Malkova, A., J. Swanson, M. German, J. H. McCusker, E. A. Housworth, Franklin W. Stahl and James E. Haber (2004) Gene conversion and crossing-over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168: 49-63.

Stahl F.W., H.M. Foss, L.S. Young, R.H. Borts, M.F. Abdullah, and G.P.Copenhaver (2004) Does crossover interference count in Saccharomyces cerevisiae? Genetics 168:35-48.

Thompson D.A. and F.W. Stahl (2003) Genetic Control of Recombination Partner Preference in Yeast Meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 164:1241.

Housworth E.A. and F.W. Stahl (2003) Crossover interference in humans. Am J Hum Genet 73:188-97.

Copenhaver G.P., E.A. Housworth, and F.W. Stahl (2002) Crossover interference in Arabidopsis. Genetics 160:1631-9.

Tarkowski, T.A., D. Mooney, L.C. Thomason, and F.W. Stahl (2002) Gene products encoded in the ninR region of phage lambda participate in Red-mediated recombination. Genes Cells. 7:351-63.

Stahl, F.W. and K.J. Hillers (2000) Heteroduplex rejection in yeast? Genetics 154:1913-6.

Hillers, K.J. and F.W. Stahl (1999) The conversion gradient at HIS4 of Saccharomyces cerevisiae: I. Rejection and restoration of Mendelian segregation. Genetics 153:555-72.

Foss, H.M., Hillers, K.J. and F.W. Stahl (1999) The conversion gradient at HIS4 of Saccharomyces cerevisae II. A role for mismatch repair directed by biased resolution of the recombinational intermediate. Genetics 153:573-83.

Thompson, D.A. and F.W. Stahl (1999) Genetic control of recombination partner preference in yeast meiosis: isolation and characterization of mutants elevated for meiotic unequal sister chromatid recombination. Genetics 153:621-41.

Gilbertson, L.A. and F.W. Stahl (1996) A test of the double-strand break repair model for meiotic recombination. Genetics 144:27-41.

Stahl, F. (1996) Meiotic recombination in yeast: Coronation of the double-strand-break repair model. Cell 87:965-8.

Foss, E.J. and F.W. Stahl (1995) A test of a counting model for chiasma interference. Genetics 139:1201-9.

Stahl, F.W. and R. Lande (1995) Estimating interference and linkage map distance from two-factor tetrad data. Genetics 139:1449-54.

Stahl, F.W. (1994) The Holliday junction on its 30th anniversary. Genetics 138:241-6.

Gilbertson, L.A. and F.W. Stahl (1994) Initiation of meiotic recombination is independent of interhomologue interactions. PNAS 91:11934-7.

Stahl, F.W. (1993) Genetic recombination: Thinking about it in phage and fungi. In The Chromosome (Heslop-Harrison and Flavell, eds.), pp. 1-9. Bios, Oxford.

Lande, R. and F.W. Stahl (1993) Chiasma interference and the distribution of exchanges in Drosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol. 58:543-52.

Foss, E., Lande, R., Stahl, F.W. and C.M. Steinberg (1993) Chiasma interference as a function of genetic distance. Genetics 133:681-91.

Thaler, D.S., and F.W. Stahl (1988) DNA double-chain breaks in recombination of phage lambda and of yeast. Ann. Rev. Genet. 22:169-97.

Stahl, F.W. (1987) Genetic Recombination. Scientific American 256:90-101.

Kolodkin, A.L., A.J.S. Klar, and F.W. Stahl (1986) Double strand breaks can initiate meiotic recombination in Saccharomyces cerevisiae. Cell 46:733-40.

Szostak, J., T.L. Orr-Weaver, R.J. Rothstein, and F.W. Stahl (1983) The double-strand-break-repair model for recombination. Cell 33:25-35.

Department of Physics | Department of Chemistry | Department of Biology | UO Life Sciences | University of Oregon